Wokingham Climatological Station, Emmbrook, Berkshire.
 Lat/Long $51^{\circ} 25^{\prime} \mathrm{N} 00^{\circ} 51^{\prime} \mathrm{W}$ NGR (SU)798701 Altitude 46m ASL.

Anomaly = departure from 1991 to 2020 average (degrees C, percent and mbar).

Notes: Above Average Rainfall with Near Average Temperature and Sunshine

Temperature: The mean this August is very slightly below the current 30 year average, but it is 0.8° above the mean for the past 142 years. The mean maximum is 0.4° below the 30 year average, and despite the trend towards higher maxima in the summer months, several recent Augusts have been cooler, namely 2011, 2014, 2015 and 2017. Although 30° has been exceeded in 10 Augusts in this millennium it was not the case this year, and the highest max of 26.9° is 1.0° below the long-term median, while the lowest max is 0.1° above its median. The highest min is 0.8° above the median but the lowest min is 2.3° above its median and is highest since 2002 and 5th highest in 120 years. Daily temperature was generally below normal for the first week, then near or above, with anomalies for daily max ranging from -5.4° on the 8 th to $+5.0^{\circ}$ on the 23 rd . Anomalies for daily min ranged from -4.3° on 7 th to $+4.6^{\circ}$ on 18 th. The lowest grass min is 2.2° above average and is highest since 2002. Ground frost is not unknown in August, the last was in 2014, but only 12 Augusts in the past 100 years have had one. Mean earth temperature at 30 cm and 1 m depth is close to average. Rainfall: The month got off to a wet start, with 73% of the month's total in the first week. The 26.2 mm that fell on the 2nd made it the wettest August day since 2011, though it ranks only 18th highest in 120 years. After the 8th there were only 4 wet days (having at least 1 mm of rain). The number of dry days is 3 fewer than average and there were no dry spells. Thunder was heard on the 5 th and there was a violent rain shower on the 2nd, but no hail this month. Rainfall accumulation compared with normal was 35 mm in surplus by the 5 th, decreasing to 30 mm by the 18 th, and to 15 mm by the 31st. Estimated soil moisture deficit shows that unirrigated shallow rooted plants would suffer slight to moderate stress after mid-month. Sunshine: The daily mean this August is close to average. In recent years, August has been sunnier in 2013, 2016 to 2019 and 2022. The 11.7 hours on the month's sunniest day is 1.1 hours below average, and is 2nd lowest after 2021 in the past 10 years. Up to the 15 th, 5 days had $>50 \%$ of the maximum, and 8 thereafter, but the highest percentage was only 78%, and was on the month's sunniest day, the 9th. Daily accumulation compared with normal was 9 hours in deficit on the 5th, then remained close to normal until the 20th, then becoming a surplus of 15 hours by the 23 rd , decreasing to 4 hours by the 31 st. Overall there were 8 days with <3 hours and 16 with $=>6$ hours. Wind: The overall mean speed of 5.4 mph is 0.5 mph below average. The month's highest gust is slightly below average. The dominant direction was SSW, with a secondary peak from W. Daily mean direction was between S and W, except from between N and E on 16th to 18th, between E and S on 10th, 14th and 31st, and between W and N on 2nd to 6th, 27th, 28th and 30th. Daily mean speeds were light or moderate throughout. Pressure: The MSL pressure fell to 983.9 mbar on the 2nd, the lowest August value since before 1976.

Table 1. Mean anomalies (max, min, rain, sun) for specified periods.

From the $1^{\text {st }}$ to the $10^{\text {th }}$			From the $11^{\text {th }}$ to the $20^{\text {th }}$				From the $21^{\text {st }}$ to the 31 st			
-1.9°	-1.0°	278%	99%	$+1.0^{\circ}$	$+1.6^{\circ}$	65%	108%	$+0.4^{\circ}$	$+0.5^{\circ}$	32%

B J Burton FRMetS. Hon. Met. Officer to Wokingham Town Council.

Wokingham climatological graphs for August 2023

Month: AUGUST 2023

Abbreviations.
Max/min $=$ highest and lowest air temperature at 1.2 m in 24 hour period ending at 09 GMT
Rain = total rainfall and melted snowfall in 24 hour period ending at 09 GMT , millimetres. ($\mathrm{Tr}=\mathrm{trace},<.05 \mathrm{~mm}$).
Grass $\mathrm{min}=$ Lowest overnight temperature at grass tip level.
Sun = hours of bright sunshine, measured electronically. Frost = Number of hours with air temp below 0 deg C.
pp09 = Air pressure corrected to mean sea level at 0900 GMT, millibars.
$\mathrm{Af}=$ Air frost. $\mathrm{Gf}=$ Ground frost. $\mathrm{Sf}=$ Snow falling. $\mathrm{SI}=$ Snow lying at 09 GMT .
Th $=$ Thunder. $\mathrm{Ha}=$ Hail $=>5 \mathrm{~mm}$. $\mathrm{Ic}=$ Hail $<5 \mathrm{~mm}$ or ice. $\mathrm{Fg}=$ Fog at 09 GMT.
Vec mean $=24$ hour mean wind vector, ddd $=$ direction in degrees from true north, $\mathrm{ff}=$ speed in knots.
$\mathrm{Sp}=24$ hour mean wind speed in knots. Note: Wind estimated from data at Reading Uni.
Max gust $=$ Highest gust in 24 hours, gg = speed in knots, HHhh $=$ Time, hours and minutes, GMT.
High hr = Highest hourly mean wind, HH = hour commencing. Rain Hrs = Duration of rain, 24 hours to 09 GMT. Excludes snow/hail.
30 cm and 100 cm are earth temperatures at those depths, read at 09 GMT.
Maximum daily rain rate in $\mathrm{mm} / \mathrm{hr}$
All temperatures in degrees Celsius.
Anomaly - Departure from the 1991 to 2020 climatological average

Mean vis $=41.2 \mathrm{~km}$
Mean cloud = 5.671%
Mean wind speed $=6.0 \mathrm{kn}$
Mean gust = 13 kn
Mean TT $=17.3^{\circ} \mathrm{C}$
Mean TdTd $=13.1^{\circ} \mathrm{C}$
Mean RH = 77.0 \%
Mean $\mathrm{r}=9.4 \mathrm{~g} / \mathrm{kg}$
Mean PPP = 1013.9 mbar
See appendix 2 below for full code details
VV = Visibility code (Code FM12-4377)
$\mathrm{N}=$ Total cloud amount, oktas
$d d=$ Direction from which wind is blowing, tens of degrees true
$\mathrm{ff}=10$ minute mean wind speed, knots
$\mathrm{gg}=$ Highest gust in past hour, knots
TT = Air temperature at 1.2 m , deg Celsius
TdTd = Dew point temperature at 1.2 m , deg Celsius
$\mathrm{RH}=$ Relative humidity at 1.2 m
$r=$ Humidity mixing ratio at $1.2 \mathrm{~m}, \mathrm{~g} / \mathrm{kg}$
PPP = Air pressure reduced to sea level, mbar
$\mathrm{a}=$ Characteristic of pressure tendency (Code FM12-0200)
$\mathrm{ppp}=3 \mathrm{hr}$ pressure tendency, tenths of mbar
ww = Present weather code (Code FM12-4677)
W1, W2 = Past weather code (Code FM12-4561)-
covers past 3 hours
$\mathrm{Nh}=$ Amount of low cloud present, oktas
$\mathrm{Cl}=$ Type of low cloud (Code Fm12-0513)
h = Height of low cloud (Code FM12-1600)
Cm = Type of medium cloud (Code FM12-0515)
$\mathrm{Ch}=$ Type of high cloud (Code FM12-0509)
8 groups. 8 = indicator for cloud detail
$\mathrm{N}=$ Amount of cloud, oktas
C = Type of cloud (FM12-0500)
hshs= Height of cloud (FM12-1677)
Remarks : COTRA = persistent condensation trails present

Observations at 1500 GMT for August 2023

Date VV N dd ff gg TT TdTd RH r PPP a pppwwW1W2 NhCI hCrCrNChshsNChshsNChshs $\begin{array}{lllllllllllllllllllll}75 & 7 & 26 & 08 & 18 & 22.6 & 12.0 & 51 & 8.8 & 1001.7 & 8 & 010 & 15 & 1 & 1 & 6 & 8 & 6 & 6 & 1 & 84845 \\ 83645 & 85357\end{array}$ $\begin{array}{lllllllllllllllllllll}30 & 7 & 13 & 04 & 07 & 16.7 & 16.1 & 96 & 11.6 & 984.0 & 7 & 021 & 80 & 6 & 2 & 7 & 8 & 1 & 7 & / & 82702 \\ 84810 & 87625\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}84 & 7 & 33 & 05 & 11 & 20.3 & 11.2 & 56 & 8.3 & 1008.0 & 1 & 013 & 03 & 2 & 2 & 3 & 8 & 6 & 7 & 1 & 82848 & 85360\end{array}$ $\begin{array}{lllllllllllllllllllllllll}86 & 7 & 29 & 07 & 14 & 18.6 & 10.7 & 60 & 7.9 & 1018.8 & 1 & 004 & 02 & 2 & 2 & 7 & 8 & 6 & / & / & 82833 & 87645\end{array}$ $\begin{array}{llllllllllllllllll}60 & 7 & 30 & 04 & 11 & 17.4 & 15.2 & 87 & 10.8 & 1001.3 & 5 & 001 & 15 & 6 & 2 & 5 & 9 & 4 \\ 7 & 3 & 82912 & 83818\end{array}$ $\begin{array}{lllllllllllllllllll}70 & 5 & 32 & 05 & 15 & 17.8 & 10.9 & 64 & 8.0 & 1018.0 & 2 & 006 & 25 & 8 & 2 & 5 & 8 & 5 & 6 \\ 0 & 82828 & 83656\end{array}$ $\begin{array}{llllllllllllllllll}86 & 7 & 26 & 06 & 14 & 20.3 & 10.4 & 53 & 7.8 & 1018.8 & 6 & 008 & 03 & 1 & 1 & 2 & 8 & 6 \\ 3 & 8 & 82843 & 87273\end{array}$ $\begin{array}{lllllllllllllllllll}63 & 8 & 21 & 07 & 15 & 17.0 & 15.7 & 92 & 11.0 & 1013.8 & 7 & 011 & 50 & 6 & 2 & 8 & 5 & 3 & /\end{array} / 87708 \quad 88615$
 $\begin{array}{lllllllllllllllllll}82 & 4 & 16 & 07 & 15 & 25.8 & 16.4 & 56 & 11.5 & 1017.7 & 8 & 008 & 02 & 1 & 1 & 3 & 4 & 6 & 8 \\ 0 & 81833 & 83638\end{array}$ $\begin{array}{llllllllllllllllll}85 & 6 & 21 & 09 & 22 & 24.3 & 15.5 & 58 & 10.9 & 1016.5 & 7 & 011 & 02 & 1 & 1 & 2 & 1 & 6\end{array} 08882838 ~ 85272$ $\begin{array}{lllllllllllllllllllllllll}68 & 6 & 21 & 13 & 24 & 21.2 & 14.8 & 67 & 10.4 & 1013.3 & 8 & 001 & 15 & 8 & 2 & 5 & 8 & 5 & 0 & 1 & 82827 & 84645\end{array}$ $\begin{array}{llllllllllllllllllllll}80 & 7 & 22 & 11 & 19 & 21.2 & 12.3 & 57 & 8.9 & 1013.2 & 1 & 002 & 15 & 2 & 2 & 7 & 8 & 6 & 7 & 1 & 83835 & 87650\end{array}$ $\begin{array}{lllllllllllllllllllllll}65 & 7 & 19 & 08 & 18 & 18.9 & 17.0 & 89 & 12.1 & 1009.6 & 3 & 004 & 25 & 8 & 2 & 7 & 8 & 3 & 7 & / & 84708 & 84635 & 87360\end{array}$ $\begin{array}{llllllllllllllllllllllll}6 & 27 & 05 & 11 & 22.4 & 12.6 & 54 & 9.0 & 1016.3 & 2004 & 02 & 1 & 1 & 4 & 8 & 6 & 6 & 0 & 82840 & 83656 & 85358\end{array}$ $\begin{array}{lllllllllllllllll}5 & 05 & 04 & 09 & 26.1 & 13.6 & 46 & 9.6 & 1019.4 & 7 & 009 & 03 & 1 & 1 & 3 & 2 & 7 \\ 6 & 1 & 83850 & 83075\end{array}$ $\begin{array}{lllllllllllllllllllllll}7 & 08 & 09 & 19 & 23.9 & 13.7 & 53 & 9.7 & 1017.6 & 7 & 015 & 03 & 1 & 1 & 1 & 1 & 6 & 8 & 1 & 81845 & 86359\end{array}$ $\begin{array}{lllllllllllllllllllllll}16 & 7 & 09 & 07 & 16 & 24.5 & 18.7 & 70 & 13.4 & 1010.6 & 7 & 019 & 03 & 2 & 2 & 7 & 8 & 5 & / 1 & 82822 & 83635 & 85645\end{array}$ $\begin{array}{llllllllllllllll}2 & 20 & 10 & 19 & 22.2 & 14.6 & 62 & 10.3 & 1015.9 & 2 & 013 & 01 & 1 & 1 & 2 & 2 \\ 5 & 0 & 1 & 82828\end{array}$ $\begin{array}{lllllllllllllllll}6 & 22 & 08 & 15 & 23.1 & 13.8 & 56 & 9.7 & 1021.3 & 7 & 004 & 15 & 1 & 1 & 3 & 2 & 6 \\ 6 & 0 & 83840 & 84357\end{array}$ $\begin{array}{lllllllllllllllll}3 & 23 & 08 & 16 & 23.4 & 13.9 & 55 & 9.7 & 1021.8 & 7 & 019 & 02 & 0 & 0 & 2 & 1 & 6\end{array} 098182837$ $\begin{array}{llllllllllllllll}1 & 26 & 08 & 17 & 24.8 & 12.7 & 47 & 9.1 & 1019.9 & 8 & 004 & 01 & 0 & 0 & 146 & 4\end{array} 1845$ $\begin{array}{lllllllllllllllll}3 & 23 & 05 & 12 & 26.1 & 13.6 & 46 & 9.6 & 1018.0 & 6 & 012 & 02 & 0 & 0 & 1 & 4 & 6\end{array} 018164583080$ $\begin{array}{llllllllllllllll}7 & 25 & 04 & 08 & 23.6 & 16.1 & 63 & 11.4 & 1009.4 & 7 & 019 & 15 & 6 & 2 & 1 & 2 \\ 6 & 8 & 1 & 81835 & 85358\end{array}$ $\begin{array}{llllllllllllllllllllllll}6 & 27 & 07 & 16 & 19.4 & 10.1 & 55 & 7.7 & 1009.1 & 8 & 010 & 15 & 2 & 2 & 5 & 8 & 6 & 3 & / & 81838 & 85656\end{array}$ $\begin{array}{lllllllllllllllllllll}6 & 28 & 06 & 13 & 17.1 & 12.2 & 73 & 8.9 & 1008.4 & 0 & 001 & 25 & 8 & 2 & 3 & 9 & 5 & 6 & 3 & 81920 & 83830\end{array}$ $\begin{array}{llllllllllllllllll}6 & 29 & 07 & 18 & 19.1 & 10.1 & 56 & 7.7 & 1011.2 & 0 & 003 & 02 & 8 & 2 & 6 & 8 & 6 & 4 \\ 5 & 82835 & 85656\end{array}$ $\begin{array}{llllllllllllllllllllllll}7 & 30 & 06 & 15 & 19.2 & 9.7 & 54 & 7.4 & 1014.9 & 0 & 000 & 02 & 2 & 2 & 7 & 8 & 6 & 1 & 1 & 81835 & 87656\end{array}$ $\begin{array}{lllllllllllllllll}7 & 23 & 07 & 14 & 19.4 & 11.4 & 60 & 8.4 & 1010.8 & 7 & 009 & 03 & 2 & 2 & 7 & 5 & 6\end{array} / 1 / 8563287640$ $\begin{array}{lllllllllllllllll}4 & 28 & 08 & 17 & 19.4 & 8.1 & 48 & 6.7 & 1008.3 & 8 & 004 & 02 & 1 & 1 & 2 & 2 & 6 \\ 6 & 1 & 82848\end{array}$ $\begin{array}{lllllllllllllllllllll}8 & 15 & 04 & 10 & 14.6 & 13.0 & 90 & 9.3 & 1009.0 & 6 & 004 & 21 & 6 & 2 & 8 & 5 & 3 & / & 86608 & 88615\end{array}$

Date Remarks
1 /Ac65 /Ci75 Cu med Sc len jpSW vv70k ex p Wind est
2 /Ac62 Cu med Wind est
3 2Sc56/Ci78 Cu con Wind est
4 Cu med Wind est
5 1Sc40 1Ac62 4As64 /Ci72 jpE vv40k ex E Wind est
6 1Ac58 Cu con jpW-N vv80k exp Wind est
7 1Sc56 1Ac69 Cu med Halo 22° part Wind est
8 Wind est
9 2Sc45 Cu hum Wind est
10 1Ac65 Cu hum Ac cas Wind est
11 /Ci78 Cu hum Halo 22° part Wind est
12 3Ci78 COTRA Cu med jpNW Wind est
13 /Ac58 /Ci72 Cu med jpNW vv60k exp Wind est
14 2Cu12 Cu med jpE vv40k W Wind est 15 Cu med Wind est
16 1Ac58 COTRA Cu con Wind est
17 2Ci78 COTRA Cu hum Ac cas Wind est
18 /Ci75 Cu hum Wind est
19 1Ci78 Vu med Wind est Absent vv\%cld est
20 Cu med jpNW vv50k ex p Wind est
21 1Cc72 1Ci78 COTRA Cu hum Wind est
22 1Sc48 1Ci80 COTRA Cu hum EIHz lyr SW Wind est 23 1Cc72 COTRA Wind est
24 3Ac63 /Ci75 COTRA Cu med Ac cas jpS Wind est 25 3Ac65 Cu med jpNW vv70k exp Wind est 26 2Ac58 3As65 /Ci72 Cu con Cb\&jp all quads Wind est 27 1Ac65 1Cs72 Cu med Cs edge W Wind est
28 1Sc45 /Ci80 Cu hum/med Wind est
29 El hz lyr Wind est
30 2Ac57 1Ci80 Cu med Wind est
31 jp NW Wind est

Mean vis $=40.6 \mathrm{~km}$
Mean cloud = 5.872%
Mean wind speed $=6.8 \mathrm{kn}$
Mean gust = 15 kn
Mean TT $=21.1^{\circ} \mathrm{C}$
Mean TdTd $=13.2^{\circ} \mathrm{C}$
Mean RH = 62.1 \%
Mean $\mathrm{r}=9.5 \mathrm{~g} / \mathrm{kg}$
Mean PPP = 1012.7 mbar
See appendix 2 below for full code details
VV = Visibility code (Code FM12-4377)
$\mathrm{N}=$ Total cloud amount, oktas
$d d=$ Direction from which wind is blowing, tens of degrees true
$\mathrm{ff}=10$ minute mean wind speed, knots
$\mathrm{gg}=$ Highest gust in past hour, knots
TT = Air temperature at 1.2 m , deg Celsius
TdTd = Dew point temperature at 1.2 m , deg Celsius
$\mathrm{RH}=$ Relative humidity at 1.2 m
$r=$ Humidity mixing ratio at $1.2 \mathrm{~m}, \mathrm{~g} / \mathrm{kg}$
PPP = Air pressure reduced to sea level, mbar
$\mathrm{a}=$ Characteristic of pressure tendency (Code FM12-0200)
$\mathrm{ppp}=3 \mathrm{hr}$ pressure tendency, tenths of mbar
ww = Present weather code (Code FM12-4677)
W1, W2 = Past weather code (Code FM12-4561)-
covers past 3 hours.
$\mathrm{Nh}=$ Amount of low cloud present, oktas
$\mathrm{Cl}=$ Type of low cloud (Code Fm12-0513)
h = Height of low cloud (Code FM12-1600)
$\mathrm{Cm}=$ Type of medium cloud (Code FM12-0515)
$\mathrm{Ch}=$ Type of high cloud (Code FM12-0509)
8 groups. 8 = indicator for cloud detail
$\mathrm{N}=$ Amount of cloud, oktas
C = Type of cloud (FM12-0500)
hshs= Height of cloud (FM12-1677)
Remarks : COTRA = persistent condensation trails present

Wokingham Hour01-Aug 02-Aug 03-Aug 04-Aug 05-Aug 06-Aug 07-Aug 08-Aug 09-Aug 10-Aug 11-Aug 12-Aug 13-Aug 14-Aug 15-Aug 16-Aug Sunshine
Hourly analysis

2023

Hour01-Aug 02-Aug 03-Aug 04-Aug 05-Aug 06-Aug 07-Aug 08-Aug 09-Aug 10-Aug 11-Aug 12-Aug 13-Aug 14-Aug 15-Aug 16-Aug																
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.15	0.00	0.00	0.00	0.00	0.14	0.26	0.05	0.00	0.17	0.00	0.00	0.00	0.00	0.08	0.00
5	0.66	0.09	0.74	0.00	0.00	1.00	1.00	0.03	0.00	1.00	0.00	0.55	0.13	0.00	1.00	0.94
6	0.77	0.00	0.98	0.00	0.00	1.00	1.00	0.00	0.49	1.00	0.00	0.59	0.00	0.03	0.97	1.00
7	0.99	0.46	0.33	0.00	0.00	0.35	1.00	0.00	1.00	1.00	0.48	0.59	0.00	0.09	1.00	1.00
8	0.93	0.55	0.69	0.00	0.00	0.32	1.00	0.00	1.00	1.00	0.43	0.25	0.23	0.12	0.99	1.00
9	0.74	0.26	0.58	0.00	0.00	0.11	0.97	0.00	1.00	0.87	0.46	0.00	0.17	0.00	0.58	1.00
10	0.73	0.11	0.61	0.04	0.00	0.09	0.46	0.00	0.94	0.31	0.57	0.19	0.29	0.00	0.90	1.00
11	0.58	0.00	0.00	0.00	0.00	0.22	0.38	0.00	0.85	0.44	0.51	0.28	0.53	0.00	0.74	0.98
12	0.76	0.00	0.00	0.00	0.00	0.22	0.94	0.00	0.73	0.31	0.15	0.35	0.06	0.00	0.94	0.60
13	0.48	0.00	0.20	0.00	0.15	0.09	0.48	0.00	0.57	0.00	0.35	0.03	0.00	0.00	0.91	0.76
14	0.77	0.00	0.65	0.01	0.23	0.26	0.11	0.00	0.87	0.85	0.34	0.46	0.17	0.00	0.11	0.84
15	0.12	0.00	0.20	0.05	0.00	0.40	0.19	0.00	1.00	0.68	0.83	0.68	0.00	0.44	0.30	0.36
16	0.11	0.00	0.00	0.04	0.00	0.97	0.42	0.00	0.91	1.00	0.96	0.01	0.44	0.05	0.77	0.37
17	0.00	0.72	0.17	0.20	0.00	1.00	1.00	0.00	0.99	0.76	0.78	0.00	0.00	0.07	0.87	0.07
18	0.00	0.93	0.00	0.87	0.00	0.67	1.00	0.00	1.00	0.79	0.76	0.00	0.16	0.01	0.61	0.16
19	0.00	0.00	0.03	0.10	0.00	0.39	0.44	0.00	0.38	0.05	0.16	0.00	0.00	0.18	0.20	0.00
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7.80	3.14	5.18	1.31	0.38	7.24	10.64	0.08	11.73	10.23	6.77	3.97	2.18	0.99	10.96	10.09

Hour 17-Aug 18-Aug 19-Aug 20-Aug 21-Aug 22-Aug 23-Aug 24-Aug 25-Aug 26-Aug 27-Aug 28-Aug 29-Aug 30-Aug 31-Aug Mean $\begin{array}{lllllllllllllll}0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00\end{array}$ $\begin{array}{llllllllllllllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}$ $\begin{array}{lllllllllllllllll}1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}$ $\begin{array}{llllllllllllllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.03\end{array}$ $\begin{array}{llllllllllllllll}5 & 0.71 & 0.00 & 0.00 & 0.84 & 0.06 & 0.00 & 0.33 & 0.00 & 0.00 & 0.00 & 0.69 & 0.64 & 0.00 & 0.49 & 0.00 \\ 0.35\end{array}$ $\begin{array}{lllllllllllllll}6 & 1.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.20 & 0.00 & 0.72 & 0.00 & 1.00 & 1.00 & 0.00 & 1.00 \\ 7 & 0.97 & 0.00 & 0.00 & 1.00 & 0.42 & 0.31 & 0.00 & 0.44\end{array}$ $\begin{array}{llllllllllllllll}0.97 & 0.00 & 0.00 & 1.00 & 0.42 & 0.31 & 0.83 & 0.00 & 0.80 & 0.02 & 1.00 & 1.00 & 0.00 & 1.00 & 0.00 & 0.50\end{array}$ $\begin{array}{lllllllllllllll}0.92 & 0.00 & 0.16 & 0.70 & 0.15 & 0.86 & 1.00 & 0.01 & 0.13 & 0.03 & 0.83 & 0.45 & 0.00 & 0.79 & 0.00 \\ 0.47\end{array}$ $\begin{array}{llllllllllllllll}0.26 & 0.00 & 0.58 & 0.72 & 0.63 & 0.20 & 0.59 & 0.64 & 0.08 & 0.23 & 0.35 & 0.10 & 0.02 & 0.71 & 0.00 & 0.38\end{array}$ $\begin{array}{lllllllllllllll}0.82 & 0.00 & 0.59 & 0.66 & 0.79 & 0.67 & 0.92 & 0.97 & 0.55 & 0.29 & 0.48 & 0.47 & 0.84 & 0.62 & 0.00 \\ 0.30 .48\end{array}$ $\begin{array}{lllllllllllllllll}0.90 & 0.08 & 0.97 & 0.95 & 0.86 & 1.00 & 1.00 & 0.45 & 0.68 & 0.28 & 0.14 & 0.44 & 0.91 & 0.44 & 0.00 & 0.47 \\ 0.91 & 0.22 & 0.51 & 0.98 & 0.88 & 0.98 & 1.00 & 0.12 & 0.29 & 0.90 & 0.02 & 0.18 & 0.30 & 0.41 & 0.00 & 0.41 \\ 0.84 & 0.24 & 0.77 & 0.60 & 0.48 & 1.00 & 1.00 & 0.03 & 0.16 & 0.10 & 0.15 & 0.10 & 0.00 & 0.27 & 0.00 & 0.31\end{array}$ $\begin{array}{llllllllllllllll}14 & 0.52 & 0.49 & 0.33 & 0.29 & 0.54 & 1.00 & 1.00 & 0.09 & 0.43 & 0.17 & 0.51 & 0.26 & 0.00 & 0.50 & 0.00 \\ 15 & 0.39 & 0.01 & 0.84 & 0.41 & 0.84 & 1.00 & 1.00 & 0.47 & 0.19 & 0.07 & 0.33 & 0.03 & 0.00 & 0.62 & 0.00 \\ 0.38\end{array}$ $\begin{array}{llllllllllllllll}16 & 0.13 & 0.00 & 0.99 & 0.23 & 0.86 & 1.00 & 1.00 & 0.02 & 0.39 & 0.77 & 0.39 & 0.60 & 0.00 & 0.44 & 0.00 \\ 17 & 0.40 & 0.00 & 1.00 & 0.66 & 0.92 & 1.00 & 0.79 & 0.02 & 0.01 & 0.52 & 0.46 & 0.32 & 0.00 & 0.63 & 0.00 \\ 0.43\end{array}$ $\begin{array}{llllllllllllllll}17 & 0.40 & 0.00 & 1.00 & 0.66 & 0.92 & 1.00 & 0.79 & 0.02 & 0.01 & 0.52 & 0.46 & 0.32 & 0.00 & 0.63 & 0.00 \\ 18 & 0.19 & 0.00 & 0.75 & 0.79 & 0.21 & 0.89 & 0.00 & 0.33 & 0.00 & 0.00 & 0.48 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.34\end{array}$

| 18 | 0.19 | 0.00 | 0.75 | 0.79 | 0.21 | 0.89 | 0.00 | 0.33 | 0.00 | 0.00 | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 |

20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Wokingham Climatological Station, Emmbrook, Berkshire.
Lat $51^{\circ} 25^{\prime} \mathrm{N} 00^{\circ} 51^{\prime} \mathrm{W}$ NGR (SU) 798701 Altitude 46 m ASL

Seasonal Means and Totals

Temperature (${ }^{\circ} \mathrm{C}$)
Mean maximum
Mean minimum
Daily mean
Rainfall total (mm)
Sunshine total (hours)
N^{0} of: Dry days
23.2
12.3
17.7
182.7
612.2
$59(+3)$

SUMMER 2023
Rank in the past $\mathbf{1 4 2}$ years

16th highest
11th highest
12th highest
50th highest

$24(-1)$

Air pressure MSL : Mean @09 GMT (mbar) 1014.5
Departure from 1991 to 2020 average shown in brackets. Notes:

Above Average Temperature, Rainfall and Sunshine.
Temperature: The mean this summer is 0.5° above the climatological average, and in the longer-term it is in the very warm category (in the top 10% of ranked values since 1882). In this millennium, 6 summers have been warmer, including the 2 warmest on record in 2018 and 2022. In terms of the mean maximum, the situation is similar, again with 6 summers with a higher mean maximum in this millennium, including the record holder, 25.3° in 2022. The mean minimum, which ranks 11 th highest in 142 years, has been exceeded 8 times in this millennium, but only twice before 2000, and not at all before 1976. June was the warmest month, mean $18.4^{\circ}\left(+2.6^{\circ}\right)$, and with a mean maximum anomaly of $+4.2^{\circ}$. This was the warmest June on record with a mean temperature 0.1° above the previous highest in 1976. July and August had a similar mean temperature, 17.4° and 17.5° respectively, and both were a little below average. The season's highest max was 31.9° on 10th June, 1.9° above the median, and the lowest max was 17.0° on the 31 st August, 2.5° above its median and 3rd highest in 120 years. The highest min was 17.3° on 28 th June, 0.1° above the median, and the lowest min was 5.8° on 3rd June, 1.4° above its median. The mean grass min was 9.5°, anomaly $+0.5^{\circ}$, and the lowest was 1.3° on 3 rd June. The last summer to have a ground frost was in 2015. Mean earth temperature at 30 cm depth was 18.8°, anomaly $+0.6^{\circ}$, and at 1 m depth, 17.4°, anomaly $+0.8^{\circ}$. Rainfall: This summer's rainfall is 32.5 mm above the average for the past 48 years, and ranks 7 th highest in this millennium. July was the wettest month with 79.5 mm , anomaly 169%, then August with 65.8 mm , anomaly 122%, and June the driest with 37.4 mm , anomaly 73%. The wettest day was the 2nd August with 26.3 mm . There were 25 dry days in June, but only 18 in July and 16 in August, giving a total of 59 for the summer, anomaly +1 day. A 27 day dry spell ended on the 10th June, a 7 day one on the 18th June, a 5 day one on the 27th June, a 5 day one on the 21st July, and none in August. Rainfall duration was 96.6 hours, anomaly +9.1 hours. There was thunder on the 11th, 12th and 20th June, 8th July and 5th August, and ice pellets also fell on the 11th June. Rainfall rate reached the violent category on the 11th and 20th June, 15th and 27th July, and 2nd August, with a maximum rate of $205 \mathrm{~mm} / \mathrm{hr}$ at 1603 GMT on the 11th June. Estimated soil moisture deficit shows that for shallow rooted unirrigated plants, stress was highest between the 20th and 29th June. An index of plant stress for the whole season gives a figure of 614, which is close to the 48 year average (maximum 1183 in 1990). Sunshine: This has been quite a sunny summer with a total 6% above average, and it ranks 9th sunniest in this millennium. June was by far the sunniest month, daily mean 8.77 hours per day, anomaly 135%, next a near average August, mean 5.86 hours per day, anomaly 101%, then a dull July, mean 5.40 hours per day, anomaly 84%. The 13 th June was the sunniest day with 15.6 hours, but July 7th with 15.5 hours was a close second. The 4 day period to 16 th June was especially sunny giving a total of 60.0 hours, a daily mean of 15.0 hours. Overall there were 23 days with <3 hours, 52 with $=>6$ hours and 10 with $=>12$ hours. Wind: The anemometer for the Wokingham weather station became unreliable during the summer, but to maintain continuity some wind data is estimated using data from Reading University, 7 km to the northwest. The men speed this summer of 6.2 mph is close to average. The windiest day was 15 th July, mean 12.9 mph , and the highest gust of 44 mph was also on that day. Daily mean direction/number of days: N, 1 NE, 14 E, 4 SE, 4 S, 9 SW, 35 W, 19 NW,6. Compared with average, winds from the NE and W were 6.2% and 6.6% more frequent respectively, while those from NW and N combined were 11.1% less frequent. Humidity: The overall men relative humidity was 74.3% and the lowest was 27% on the 16 th June. The mean water vapour content per kg of air was 9.2 g at 0900 GMT and 9.1 g at 1500 GMT. Pressure: The season's highest MSL pressure was 1026.8 mbar on 1st June and the lowest was 983.9 mbar on the 2nd August, span 42.9 mbar, average 35.2 mbar. This season's lowest pressure is the lowest for any summer season since before 1976. June: New record mean temperature. Very sunny. Rainfall below average. Daily mean temperature and mean maximum highest in the past 142 years. The lowest max is 2 nd highest in 111 years. The highest min is 4 th highest in the same period. Mean earth temperature at 1 m depth highest since before 1990 . Over half the month's rain fell in less than 20 minutes. Sunniest since 1996. July: Wet and dull with below average temperature. Mean maximum 3.0° lower than in June this year. Rainfall 69% above average. Dullest since 2012. Mean pressure equal lowest with 1988 for July in the past 48 years. August: Above average rainfall with near average temperature and sunshine. Lowest min 5th highest in 120 years. MSL pressure fell to 983.9 mbar on 2nd, the lowest far any August since before 1976.

Month	Mean	Anom	Mean Min	Anom	Rain mm	Anom	Sun hrs		Anom	Mean Wind mph	Max gust	Mean pressure
Anom												

Appendix 1.

Explanation and definition of some of the terms used in the Wokingham Weather Reports.

Average: Generally refers to the 30 year climatological average, currently 1981 to 2010. This will be next updated in 2020. For some parameters, notably wind, the climatological average is not available, and if the word average is used in the context of wind, it refers to the average for the period for which data is held, namely 1988 to present.

For sunshine, there was a change, in July 1999, in the type of instrument used to detect sunshine amount, making the climatological average based on the old instrument of little use. In general, the new instrument produces higher values in the winter half year, and lower ones in the summer half, than the old type, due to a combination of faster reaction and higher sensitivity than the old type. The average used in this case is based on a theoretical equivalent 1981 to 2010 average, drawn from comparison with the Met Office published tables of departure from climatological average sunshine in the months since 2000 for their area 'Southern England'. Users of the Wokingham Monthly Weather reports should be aware of this, and regard anomalies for sunshine published therein as a guide only, until such time has elapsed since the introduction of the new instrument that a genuine average becomes available.

Mean: The mean of the data under discussion, often the monthly mean of daily data. The mean is obtained by summation of the individual values and dividing by the number of values. The term 'daily mean' in respect of temperature is defined as ' $(\max +\mathrm{min})$ / 2 ' . A true daily 24 hour (00 to 24 GMT) mean temperature is available from the Automatic Weather Station (AWS), and is currently published on page 7 of the Wokingham Monthly Weather report, on the Wokingham Weather web site, page 1. http://www.woksat.info/wwp1.html

Anomaly: When a value is given for anomaly, this will have one of the following meanings:
a): The departure of a mean from the current climatological average.
b): The departure of a value on a particular day from the average for that day, (this need not be a climatological average).
When the word anomaly is used in respect of temperature, any values given are in ${ }^{\circ} \mathrm{C}$. In respect of rainfall or sunshine, percent. In respect of wind, mph. In respect of pressure, millibars (hpa).

Categories: Reference may be made in the reports to 'categories'. Each category has a strict statistical range, as outlined below.
Temperature: The terms cold/mild are used in the winter half year, and cool/warm in the summer half.
The term 'normal' is used when the individual mean (monthly, seasonal or annual) value is within 20% of the median of all ranked values for that month/season/year.
Mild/warm: The value lies between 10% and 30% below the highest value in the ranked series.
Very mild/very warm: The value lies within 10% of the highest value in the ranked series.
Cold/cool: The value lies between 10% and 30% above the lowest value in the ranked series.
Very cold/very cool: The value lies within 10% of the lowest value in the ranked series.
Sunshine: The terms for sunshine are very sunny, sunny, normal, dull and very dull.
The definition of these terms follow the same rules as for temperature.
Rainfall: The terms for rainfall are very dry, dry, normal, wet and very wet.
The definition of the term 'normal' follows the same rule as for temperature and sunshine.
Wet: The value lies between 10% and 30% of the highest value in the ranked series.
Very wet: The value lies within 10% of the highest value in the ranked series.
Dry: The value lies between 10% and 30% above the lowest value in the ranked series.
Very dry: The value lies within 10% of the lowest value in the ranked series.
Long-term: Mention may be made in the reports to the 'long-term'. The long-term record comprises a temperature/rainfall/sunshine data series compiled from records of various weather stations in the Wokingham area in the years prior to the establishment of the weather station at Emmbrook in 1976 together with data from this station.
In the case of monthly max, min and mean temperature and of rainfall total the series starts in 1882. For temperature extremes, the highest max and lowest min go back to 1904, and lowest max and highest min to 1913.

Rank: The word rank refers to the position of a value for a particular month/season/year in the ranked series, and may be expressed relative to either the highest or lowest value in the series. The central value in the ranked series is known as the median. This value may be different from the average of the whole series if the population is skewed. It can also be different from the climatological average which only refers to a 30 year period.

Month: Calendar month.
Season: Spring, March to May.
Summer, June to August
Autumn, September to November
Winter, December to February.
When discussing 'winter', if a single year is given this refers to the year in which the January/February fall.
Annual or Year: The calendar year, $1^{\text {st }}$ January to $31^{\text {st }}$ December.
The climatological day: runs from 0900 to 0900 GMT. The max temperature and rainfall read at 0900 hours are attributed to the previous day (thrown back), as is the duration of measurable rain. The min temperature and grass min read at 0900 hours are attributed to the day of reading. Pressure read at 0900 GMT , and the monthly mean pressure is the mean of the 0900 GMT readings. Sunshine data, wind data, rainfall rate data and 24 hour data from the AWS use the normal 00-24 GMT day.

Frost: An air frost day is recorded when the minimum temperature read at 0900 GMT on that day is $-0.1^{\circ} \mathrm{C}$ or below. A ground frost day is recorded when the grass minimum temperature read at 0900 GMT on that day is -0.1 ${ }^{\circ} \mathrm{C}$ or lower.
Duration of air frost is defined as the number of minutes that the AWS one minute average temperature is below $0.0^{\circ} \mathrm{C}$, and the day runs from midnight to midnight.

Snow: A day with snow falling is triggered if snow falls at any time in the 24 hours from midnight on that day. A day with snow lying is entered if there is at least 50% snow cover at the 0900 GMT observation.
Snow depth is the depth of undrifted snow. Snow that collects in the raingauge funnel is melted and the amount recorded as rainfall.

Hail: A day of hail is recorded if hailstones 5 mm or more in diameter are observed or recorded on the hail pad in a 24 hour period starting at midnight.
A day of small hail is recorded if hailstones less than 5 mm diameter are observed or recorded in a 24 hour period starting at midnight. The term small hail also includes various other types of ice meteor such as ice pellets, snow grains and some types of snow pellets.

Fog: A day with fog is recorded if the horizontal visibility at 0900 GMT is below 1000 m .
Thunder: A day of thunder is recorded if thunder is heard in the 24 hour period from midnight on that day. The appearance of lightning without thunder being heard does not qualify as a thunder day.

Trace of rainfall: A trace of rain, entered as 'tr' in the daily log, is recorded if rain is observed to fall but is of insufficient quantity to collect in the raingauge, or if the amount of rain in the gauge is less than 0.05 mm .

Dry spell: A dry spell is defined as a period of 5 or more consecutive dry days.
Dry day: A dry day is one with less than 0.2 mm of rainfall.
Rain day: A rain day is one with 0.2 mm or more of rainfall.
Wet day: A wet day is one having 1.0 mm or more of rainfall.

Appendix 2.

Explanation and decode for code figures used in the Wokingham 0900 and 1500 GMT observations
VV: Visibility.
Code figures 00 to 50 are in km and tenths e.g. $01=0.1 \mathrm{~km}=100 \mathrm{~m}, 33=3.3 \mathrm{~km}, 50=5.0 \mathrm{~km}$
Code figures 60 to 80 . Subtract 50 to obtain visibility in km. e.g. $56=6 \mathrm{~km}, 65=15 \mathrm{~km}, 77=27 \mathrm{~km}$.
Code figures 81 to 89 . Subtract 50 and add 5 for every one above 80 . e.g. $83=45 \mathrm{~km}, 86=60 \mathrm{~km}$.
Code figure $89=$ visibility above 70 km .
\mathbf{N} : Total cloud amount in okta (eighths of sky covered). $9=$ sky obscured (e.g. by fog or snow)
dd : Wind direction in tens of degrees from true north. Wind is measured at a height of 10 m , and the direction is the mean over a period of 10 minutes ending at the observation time.
ff : Wind speed in knots, measured at 10 m , and is the mean over a period of 10 minutes ending at observation time.
$\mathbf{g g}$: Wind gust in knots at 10 m . The highest gust in the 60 minutes up to observation time.
TT : Air temperature at 1.2 m , degrees C and tenths.
TdTd : Dew point temperature at 1.2 m , degrees C and tenths.
RH : Relative humidity at $1.2 \mathrm{~m}, \%$.
\mathbf{r} : Humidity mixing ratio (amount of water vapour per kg of air), grams and tenths.
PPP : Air pressure reduced to MSL, millibars and tenths.
a : Characteristic of pressure tendency during the past 3 hours.
Code figures 0 to 3 , pressure higher than 3 hours ago, 5 to 8 , pressure lower than 3 hours ago
Code figure $0=$ Increasing then decreasing, pressure the same as or higher than 3 hours ago
$1=$ Increasing then steady or increasing more slowly
2 = Increasing steadily or unsteadily
3 = Decreasing or steady then increasing, or increasing then increasing more rapidly
4 = Steady, pressure the same as 3 hours ago
$5=$ Decreasing then increasing, pressure lower than 3 hours ago
$6=$ Decreasing then steady or decreasing more slowly
$7=$ Decreasing steadily or unsteadily
$8=$ Steady or increasing then decreasing, or decreasing then decreasing more rapidly
ppp : 3 hour pressure tendency in tenths of a millibar
ww : Present weather code figures, 00 to 99.
Present weather decode:
$00=$ Cloud development not observed or not observable
$01=$ Clouds generally dissolving or becoming less developed
$02=$ State of sky on the whole unchanged
$03=$ Clouds generally increasing or becoming more developed
$04=$ Visibility reduced by smoke, e.g. veldt or forest fires, industrial smoke or volcanic ashes.
$05=$ Haze, visibility reduced by extremely small dry particles (RH less than appx. 95%)
$06=$ Widespread dust in suspension, not raised by the wind near the station at the time of the observation
$07=$ Dust or sand raised by the wind at or near the station at the time of the observation, but no well-developed dust whirls or sand whirls, and no duststorm or sandstorm seen: In marine environments, blowing spray at the station.
$08=$ Well-developed dust or sand whirls seen at or near the station during the preceding hour or at the time of the observation, but no duststorm or sandstorm.
$09=$ Duststorm or sandstorm within sight at the time of the observation, or at the station during the preceding hour
$10=$ Mist
$11=$ Patches of shallow fog not deeper than 2 metres on land
$12=$ More or less continuous shallow fog not deeper than 2 metres on land
$13=$ Lightning visible, no thunder heard
$14=$ Precipitation within sight, not reaching the ground
$15=$ Precipitation within sight, reaching the ground more than 5 km from the station
$16=$ Precipitation within sight, reaching the ground, near to but not at the station
$17=$ Thunderstorm, but no precipitation at the time of the observation
$18=$ Squalls at or within sight of the station at the time of the observation or during the preceding hour
$19=$ Funnel cloud(s) at or within sight of the station at the time of the observation or during the preceding hour
$20=$ Drizzle (not freezing) at the station during the preceding hour but not at the time of the observation
$21=$ Rain (not freezing) at the station during the preceding hour but not at the time of the observation
$22=$ Snow at the station during the preceding hour but not at the time of the observation
$23=$ Rain and snow or ice pellets at the station during the preceding hour but not at the time of the observation
$24=$ Freezing drizzle or freezing rain at the station during the preceding hour but not at the time of the observation
$25=$ Shower(s) of rain at the station during the preceding hour but not at the time of the observation
$26=$ Shower(s) of snow or rain and snow at the station during the preceding hour but not at the time of the observation
$27=$ Shower(s) of hail or rain and hail at the station during the preceding hour but not at the time of the observation
$28=$ Fog or ice fog at the station during the preceding hour but not at the time of the observation
$29=$ Thunderstorm, with or without precipitation at the station during the preceding hour but not at the time of the observation
$30=$ Slight or moderate duststorm or sandstorm has decreased during the preceding hour
$31=$ Slight or moderate duststorm or sandstorm with no appreciable change during the past hour
$32=$ Slight or moderate duststorm or sandstorm has begun or increased during the past hour
$33=$ Severe duststorm or sandstorm has decreased during the preceding hour
$34=$ Severe duststorm or sandstorm with no appreciable change during the past hour
$35=$ Severe duststorm or sandstorm has begun or increased during the past hour
$36=$ Slight or moderate drifting snow generally below eye level
37 = Heavy drifting snow generally below eye level
38 = Slight or moderate blowing snow generally above eye level
39 = Heavy blowing snow generally above eye level
$40=$ Fog or ice fog at a distance at the time of the observation, but not at the station during the preceding hour, the fog extending to a level above that of the observer.
$41=$ Fog or ice fog in patches
$42=$ Fog or ice fog, sky visible has become thinner during the past hour
$43=$ Fog or ice fog, sky invisible has become thinner during the past hour
$44=$ Fog or ice fog, sky visible no appreciable change during the past hour
$45=$ Fog or ice fog, sky invisible no appreciable change during the past hour
$46=$ Fog or ice fog, sky visible has begun or become thicker during the past hour
$47=$ Fog or ice fog, sky invisible has begun or become thicker during the past hour
$48=$ Fog, depositing rime, sky visible
$49=$ Fog depositing rime, sky invisible
$50=$ Drizzle, not freezing, intermittent slight at time of observation
$51=$ Drizzle, not freezing, continuous slight at time of observation
$52=$ Drizzle, not freezing, intermittent moderate at time of observation
53 = Drizzle, not freezing, continuous moderate at time of observation
$54=$ Drizzle, not freezing, intermittent heavy at time of observation
$55=$ Drizzle, not freezing, continuous heavy at time of observation
56 = Drizzle, freezing, slight
57 = Drizzle, freezing, moderate or heavy (dense)
$58=$ Drizzle and rain, slight
$59=$ Drizzle and rain, moderate or heavy
$60=$ Rain, not freezing, intermittent slight at time of observation
$61=$ Rain, not freezing, continuous slight at time of observation
$62=$ Rain, not freezing, intermittent moderate at time of observation
63 = Rain, not freezing, continuous moderate at time of observation
64 = Rain, not freezing, intermittent heavy at time of observation
$65=$ Rain, not freezing, continuous heavy at time of observation
$66=$ Rain, freezing, slight
67 = Rain, freezing, moderate or heavy
$68=$ Rain or drizzle and snow, slight
69 = Rain or drizzle and snow, moderate or heavy
$70=$ Intermittent fall of snowflakes slight at time of observation
$71=$ Continuous fall of snowflakes slight at time of observation
72 = Intermittent fall of snowflakes moderate at time of observation
73 = Continuous fall of snowflakes moderate at time of observation
74 = Intermittent fall of snowflakes heavy at time of observation
$75=$ Continuous fall of snowflakes heavy at time of observation
$76=$ Diamond dust (with or without fog)
77 = Snow grains (with or without fog)
$78=$ Isolated star-like snow crystals (with or without fog)
$79=$ Ice pellets
$80=$ Rain shower(s), slight
81 = Rain shower(s), moderate or heavy
$82=$ Rain shower(s), violent
$83=$ Shower(s) of rain and snow mixed, slight
$84=$ Shower(s) of rain and snow mixed, moderate or heavy
$85=$ Snow shower(s), slight
$86=$ Snow shower(s), moderate or heavy
$87=$ Shower(s) of snow pellets or small hail, with or without rain or rain and snow mixed, slight
$88=$ Shower(s) of snow pellets or small hail, with or without rain or rain and snow mixed, moderate or heavy
$89=$ Shower(s) of hail, with or without rain or rain and snow mixed, not associated with thunder, slight
$90=$ Shower(s) of hail, with or without rain or rain and snow mixed, not associated with thunder, moderate or heavy
91 = Slight rain at time of observation, thunderstorm during the past hour but not at time of observation
$92=$ Moderate or heavy rain at time of observation, thunderstorm during the past hour but not at time of observation 93 = Slight snow, or rain and snow mixed, or hail at time of observation, thunderstorm during the past hour but not at time of observation
$94=$ Moderate or heavy snow, or rain and snow mixed, or hail at time of observation, thunderstorm during the past hour but not at time of observation
$95=$ Thunderstorm, slight or moderate, without hail but with rain and or snow at time of observation
$96=$ Thunderstorm, slight or moderate, with hail at time of observation
$97=$ Thunderstorm, heavy, without hail but with rain and or snow at time of observation
$98=$ Thunderstorm combined with duststorm or sandstorm at time of observation
$99=$ Thunderstorm, heavy, with hail at time of observation
Hail includes large hail, small hail and snow pellets.

W1, W2 : Past weather (for 0900 and 1500 GMT observations, the period covered is 3 hours)
Code figures:
$0=$ Cloud covering half or less of the sky throughout the period
$1=$ Cloud covering more than half the sky during only part of the period
$2=$ Cloud covering more than half the sky throughout the period
3 = Sandstorm, duststorm or blowing snow
$4=$ Fog or ice fog or thick haze (visibility less than 1000 m)
5 = Drizzle
6 = Rain
7 = Snow or rain and snow mixed
$8=$ Shower(s)
$9=$ Thunderstorm(s) with or without precipitation
Nh : Amount of low cloud, or medium cloud if no low cloud present, okta
Cl : Type of low cloud
$0=$ No low cloud
$1=$ Cumulus with little vertical extent and seemingly flattened, or ragged Cumulus other than bad weather, or both $2=$ Cumulus of moderate or strong vertical extent, either accompanied or not by other Cumulus or Stratocumulus all having their bases at the same level
$3=$ Cumulonimbus whose summits, at least partially, lack sharp outline, but are neither clearly fibrous (cirriform), nor in the form of an anvil; Cumulus, Stratocumulus or Stratus may also be present
$4=$ Stratocumulus formed by the spreading out of Cumulus; Cumulus may also be present
$6=$ Stratus in a more or less continuous sheet or layer, or ragged shreds, or both, but no Stratus fractus of bad weather
7 = Stratus fractus of bad weather or Cumulus fractus of bad weather or both (pannus), usually below Altostratus or Nimbostratus
$8=$ Cumulus and Stratocumulus other than that formed by the spreading out of Cumulus, the bases of the Cumulus and Stratocumulus are not at the same level.
$9=$ Cumulonimbus, the upper part of which is clearly fibrous (cirriform), often in the form of an anvil, either accompanied or not by any other type(s) of low cloud
/ = Types of low cloud invisible due to darkness, fog, blowing dust or sand or other similar phenomena.
'Bad weather' denotes the conditions which generally exist during precipitation and a short time before and after.
Cm : Type of medium cloud.
$0=$ No medium cloud.
$1=$ Altostratus, the greater part of which is semi-transparent; through this part the sun or moon may be weakly visible, as through ground glass
$2=$ Altostratus, the greater part of which is sufficiently dense to hide the sun or moon, or Nimbostratus
$3=$ Altocumulus, the greater part of which is semi-transparent; the various elements of the cloud change only slowly and are all at a single level
$4=$ Altocumulus in patches (often in the form of almonds or fishes), the greater part of which is semi-transparent ; the clouds occur at one or more levels and the elements are continually changing in appearance
$5=$ Altocumulus in bands semi-transparent, of Altocumulus in one or more fairly continuous layers (semitransparent or opaque), progressively invading the sky; these Altocumulus clouds generally thicken as a whole $6=$ Altocumulus resulting from the spreading out of Cumulus (or Cumulonimbus)
7 = Altocumulus in two or more layers, usually opaque in places, and not progressively invading the sky; or opaque layer of Altocumulus not progressively invading the sky; or Altocumulus together with Altostratus or Nimbostratus $8=$ Altocumulus with sproutings in the form of small towers or battlements, or Altocumulus having the appearance of cumuliform tufts
9 - Altocumulus of a chaotic sky, generally at several levels
/ = Types of medium cloud invisible owing to darkness, fog, blowing dust of sand or other similar phenomena, or more often because of the presence of a continuous layer of lower clouds.

Ch : Type of high cloud
$0=$ No high cloud
$1=$ Cirrus in the form of filaments, strands or hooks, not progressively invading the sky.
$2=$ Dense cirrus, in patches or entangled sheaves, which usually do not increase and sometimes seem to be the remains of the upper part of a Cumulonimbus; or Cirrus with sproutings in the form of small turrets or battlements, or Cirrus having the appearance of cumuliform tufts
$3=$ Dense Cirrus, often in the form of an anvil, being the remains of the upper part of Cumulonimbus, or where the rest of the Cumulonimbus is below the horizon
4 = Cirrus in the form of hooks or filaments, or both, progressively invading the sky; they generally become denser as a whole
$5=$ Cirrus (often in bands converging towards one or two opposite points on the horizon) and Cirrostratus, or Cirrostratus alone; in either case they are progressively invading the sky, and generally growing denser as a whole, but the continuous veil does not reach 45 degrees above the horizon.
$6=$ Cirrus (often in bands converging towards one or two opposite points on the horizon) and Cirrostratus, or Cirrostratus alone; in either case they are progressively invading the sky, and generally growing denser as a whole; the continuous veil extends more than 45 degrees above the horizon, without the sky being totally covered
7 = Veil of Cirrostratus covering the celestial dome.
$8=$ Cirrostratus not progressively invading the sky and not completely covering the celestial dome
$9=$ Cirrocumulus alone, or accompanied by Cirrus or Cirrostratus, or both, but Cirrocumulus is predominant.
/ = Types of high cloud invisible owing to darkness, fog, blowing dust of sand or other similar phenomena, or more often because of the presence of a continuous layer of lower clouds.

8 Groups

$\mathbf{N}=$ Amount of cloud reported by C, okta.
C = Type of cloud
$0=$ Cirrus (Ci)
$1=$ Cirrocumulus (Cc)
$2=$ Cirrostratus (Cs)
$3=$ Altocumulus (Ac)
4 = Altostratus (As)
$5=$ Nimbostratus (Ns)
$6=$ Stratocumulus (Sc)
7 = Stratus (St)
$8=$ Cumulus (Cu)
$9=$ Cumulonimbus (Cb)
/ = Cloud type not visible owing to darkness, fog, duststorm, or other analogous phenomena.
hshs $=$ Height of cloud above station level reported by type C
00 to $50=$ Height in hundreds of feet
51 to 55 Not used
56 to $80=$ Subtract 50 to obtain cloud height in thousands of feet
81 to $88=$ Height of cloud between 35000 and 70000 ft in 5000 ft steps.

